If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2+9y-486=0
a = 2; b = 9; c = -486;
Δ = b2-4ac
Δ = 92-4·2·(-486)
Δ = 3969
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3969}=63$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-63}{2*2}=\frac{-72}{4} =-18 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+63}{2*2}=\frac{54}{4} =13+1/2 $
| 1/3a+1/6a=-1 | | 9y^2-6+1=0 | | 5c–9c=-8 | | (x^2)-x-45=0 | | −t=9(t−10)-t=9(t-10)−t=9(t−10) | | 3x-7+4x+3+x=180 | | 84/19=n- | | 180x-220=-500 | | 3x-7+4x+3=180 | | 84*19=n- | | -n-84=19 | | 84-19=-n | | 150x+-285=315 | | 2(a-4)=a+3 | | -84x+180=-156 | | Y+8-3y=16 | | 43/10x=1/9 | | X-75/84x=9 | | 6(2x-1)^2+2=-7(2x-1) | | -54x+-36=180 | | 13x-2,4=6,2+4x | | 6-y-2y=18 | | -4x+13=-3 | | 18x+54=-72 | | -7x-7(-2x+16)=-147 | | (5-x)(4-x)(9-x)=180-96 | | 7x-x=5^21/5^19+3.4-7^0 | | x+4x/x-4=16/x-4 | | x+4x/x-4=16/x-5 | | 0.6n+0.8=1.4 | | 24/x+3=3 | | 3x^2+42x-400=0 |